Missing Values
Julia has several different ways of representing missing data. If a column of data may contain missing values, JuliaDB supports both missing value representations of Union{T, Missing}
and DataValue{T}
.
While Union{T, Missing}
is the default representation, functions that generate missing values (join
) have a missingtype = Missing
keyword argument that can be set to DataValue
.
- The
convertmissing
function is used to switch the representation of missing values.
julia> using DataValues
julia> convertmissing(table([1, NA]), Missing)
Table with 2 rows, 1 columns:
1
───────
1
missing
julia> convertmissing(table([1, missing]), DataValue)
Table with 2 rows, 1 columns:
1
───
1
#NA
- The
dropmissing
function will remove rows that containMissing
or missingDataValue
s.
julia> dropmissing(table([1, NA]))
Table with 1 rows, 1 columns:
1
─
1
julia> dropmissing(table([1, missing]))
Table with 1 rows, 1 columns:
1
─
1